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CS History: Mohamed M. Atalla

• Born in 1924 in Egypt
• Invented the MOSFET (metal-oxide 

semiconductor field-effect transistor) 
with Dawon Kahng in 1960

• First truly compact transistor
• MOS transistors are the fundamental 

building blocks of today’s electronics
• Most manufactured device in history

– 13 sextillion MOS transistors 
manufactured as of 2018

• Went on to start a cybersecurity 
company, invented the “Atalla box” 
which secured most ATMs in the past

, أحمد بن طارق CC BY-SA 4.0



Arithmetic and Logical Unit (ALU)

• Need to use digital logic to build a unit that can do basic 
computation – math, logical operations, etc.

• Needs to be 32 bits wide, since MIPS has 32 bit words.

– Build out of 1-bit ALUs



Our ALU will support the following operations:

• Add

• Sub

• And

• Or

• Nor

• Nand

• Set less than 



1-bit ALU: AND and OR

• Inputs go to both AND and OR

• Multiplexer selects AND or OR function for output



If a = 0, b = 1, and operation = 1, what is Result?

A. 0

B. 1

C. Impossible to say without additional information



1-bit Binary Addition

0 + 0 =   0

0 + 1 =   1

1 + 0 =   1

1 + 1 = 10

Need to account for two output bits!



Half Adder

• Inputs a, b

• Outputs sum and carry out

• Sum is the 1-bit result of adding a and b

• Carry out is the carry in the normal sense



Below is the truth table for the SUM output of a half adder.  
What is the Boolean algebra function that will give us this truth 

table?

A. a OR b

B. a XOR b

C. a AND b

D. a NOR b

E. None of the above

a b Sum 

0 0 0

0 1 1

1 0 1

1 1 0



Below is the truth table for the CARRY output of a half adder.  
What is the Boolean algebra function that will give us this truth 

table?

A. a OR b

B. a XOR b

C. a AND b

D. a NOR b

E. None of the above

a b Carry out

0 0 0

0 1 0

1 0 0

1 1 1



Binary Addition with Arbitrary Number of Bits

• Just like regular, grade school addition 

– Make sure we carry a 1 to the next digit when needed

• Now we need to be able to account for the carry-in from the 
next least-significant bit

• Example: 7+5     



Addition

• We’re going to chain together thirty-two 1-bit “full adders”

• Each full adder has
– 3 inputs: a, b, and carry in (which is the carry out of the previous bit)

– 2 outputs: sum and carry out

0111

0101

––––

1100

1 1 1



Full Adder from Half Adders

Build a full adder from two half adders



What if both half adders have carry-out?

A. We will get the wrong answer

B. We will ignore it; the answer 
will still be correct

C. That will never happen

D. None of the above



Ripple-Carry Adder

• Create adder for an arbitrary number of bits simply by 
connecting carry-out from adder n-1 to the carry-in for adder n

• Carry bit “ripples” up



1-bit ALU



Subtraction: a − b

• Just add negative version of b!

• To negate operand, take its two’s compliment

– Invert each bit

– Add one



We can use a NOT gate to invert the input.  To add 
one to the input, we should

A. Set the carry-in for the least significant bit to 1

B. Add a new “subtract” input to each full adder that we set to 1 
for subtraction and 0 for addition

C. Do something else



1-bit ALU with Subtraction



This 1-bit ALU supports 4 operations (and, or, add, 
sub). How many bits are required in the operation 

input signal, and why do we need that many?

A. 1

B. 2

C. 3

D. 4



Adding NOR

• Want to add NOR functionality

• DeMorgan’s Law

– (A+B) = A ̅B̅



To add NOR to the ALU, we need to add

A. Nothing

B. The ability to invert A

C. A NOR gate

D. Something else DeMorgan’s Law
(A+B) = A ̅B̅



1-bit ALU with NOR



Adding slt

• slt rd, rs, rt

– rd = 1 if rs < rt, and 0 otherwise 

• Only sets least significant bit

– All other bits are 0



1-bit ALU:  Add new input for slt

In all but the least significant bit,
Less will always be 0



How do we tell if a < b?

• Subtract b from a

• If a – b < 0, then a < b

• We can check this by checking the most significant bit

– MSB = 1, a < b



• Problem:  Output is at most 
significant bit, we need it at 
least significant bit

• Solution:  Special ALU for Most 
Significant Bit, with output for 
SLT

• Connect Set output to Less input 
for least significant bit



1-bit ALU for the Most Significant Bit

This doesn’t 
always work! 
You’ll fix it in 
problem set 6



Recall: Overflow

• If we add two n-bit numbers, we may end up with a number 
we can only represent in at least n+1 bits

• Hardware can detect this



a and b have different signs.  Will adding them ever 
result in overflow?

A. Yes

B. No



Adding overflow detection to add

• If a and b have different MSBs, then there is no overflow

• If a and b have the same MSB, then

– If the output MSB is different from the input MSBs, then overflow 
occurred

• Another way to check for overflow: If the carry into the MSB 
differs from the carry out of the MSB, then overflow occurs



Overflow if carry into MSB ≠ carry out of MSB
(All numbers in binary!)

• Set up: We’re adding two numbers let a and b be the MSB of the 
two inputs to add. Four cases to consider

1. Carry in but no carry out: a + b + 1 ≤ 1 (because no carry out) so a = b = 0 
but MSB of result is 1 (because 0 + 0 + 1 = 01): Overflow

2. No carry in but carry out: a + b + 0 > 1 (because carry out) so a = b = 1  
but MSB of result is 0 (because 1 + 1 + 0 = 10): Overflow

3. Carry in and carry out: a + b + 1 > 1. If a ≠ b, then no overflow. If a = b, 
then a = b = 1 so MSB of result is 1 (because 1 + 1 + 1 = 11): No overflow

4. No carry in, no carry out: a + b + 0 ≤ 1. If a ≠ b, then no overflow. If a = b, 
then a = b = 0 so MSB of result is 0 (because 0 + 0 + 0 = 00): No overflow



To check if the Carry_in is different from the 
Carry_out, check if

A. Carry_in AND Carry_out == 0

B. Carry_in OR Carry_out == 1

C. Carry_in NOR Carry_out == 0

D. Carry_in XOR Carry_out == 1

E. None of the above



Reading

• Next lecture:  Clocks, Latches and Flip flops

– 3.6

• Problem set 5

– Due Friday

• Lab 4

– Due Monday
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